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We consider the boundary value problem of an isotropic, linearly elastic or linearly viscoelastic material 
constrained in a rigid die and loaded by a uniform axial stress a33 ('piston/die' problem). The elastic solution 
is obtained in terms of the shear and bulk modulus of the material, and the Laplace-transformed form of the 
viscoelastic solution in terms of the Laplace transforms of the shear and bulk relaxation moduli. Solutions to 
the viscoelastic problem at t = 0 and for t --* ~ are found, which involve only values of the relaxation moduli at 
these times. The complete solutions in time space for a viscoelastic material which has a time-independent 
bulk modulus, and behaves like a Maxwell or Voigt model in shear, are calculated and discussed. For typical 
elastic and solid viscoelastic materials, the volume change in the 'piston/die' situation is only 60--80 % of that 
observed in the hydrostatic case with P=  -aa3. The 'piston/die' geometry is therefore not a universally 
applicable method for pressure-volume-temperature (PVT) studies. Methods in which a material is 
subjected to true hydrostatic pressures (achieved through the use of a confining fluid) must be preferred. 
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I N T R O D U C T I O N  

Within the theories of linear elasticity 1 and linear 
viscoelasticity 2'a, the responses of a material to shear 
stresses and to a hydrostatic pressure provide the most 
fundamental mechanical characterization possible. We 
wish to analyse and compare the solutions of the 
mechanical boundary value problems that underlie two 
techniques commonly used to study the response of the 
volume of a polymer to pressure 4'5, also known as 
pressure-volume-temperature (PVT) studies. 

In one of the techniques 6-9 the material is subjected to 
a true hydrostatic pressure through the use of a confining 
fluid, often mercury. In the other technique 1°-1a, a 
sample is placed in a die or cylinder, and a force is applied 
to one end of the sample with a piston. In this type of 
experiment, it is always implied, or explicitly stated, that 
the sample is subjected to a pressure P = F/A, in which F 
is the force applied to the piston, and A the cross-sectional 
area. As long as the sample is a true liquid, this is certainly 
a correct statement. However, it is not correct when the 
sample has any kind of solid-like character, such as 
polymers in the glassy, semicrystaltine and melt state. 
One of us (PZ) has pointed this out previously 4'5. This 
paper will analyse this situation in some detail, and will 
compare volume changes measured in a 'piston/die' type 
of experiment with those obtained under true hydrostatic 
conditions. 

We will first discuss a solution to the 'piston/die' 
problem for a linear elastic material. Using the 
correspondence principle between elasticity and 
viscoelasticity a, the solution to the elastic problem will 
then be transformed into a solution of the linear 
viscoelastic problem. Linear viscoelasticity has been 
shown to be a good description of polymers in a variety of 
states 2 (glassy, semicrystalline and melt), and some very 
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general conclusions regarding the behaviour of a 
polymeric material constrained in a die can be drawn 
from our analysis without reference to specific materials. 
For  two specific material models (Maxwell and Voigt 
elements) complete solutions will be derived and 
discussed. 

STATEMENT OF PROBLEMS 

"Piston/die' problem 
An isotropic material is placed into a die or cylinder 

with zero clearance and no friction between sample and 
die wall. The axis of the die is paralld to the x 3 direction. 
The die is assumed to be rigid. A force F(t) is applied to 
the free end of the sample in the x3 direction, and is evenly 
distributed over the area A. We will allow this force to be 
a function of time. This has no particular consequences 
for an elastic material: all stresses and strains will depend 
only on the instantaneous value of the force. However, for 
a viscoelastic material the stresses and strains at a given 
time are determined by the entire past history of these 
quantities. 

Hydrostatic problem 
The material is subjected to a hydrostatic pressure P(t). 

This is achieved in practice by surrounding it with a liquid 
under pressure 6-9. 

Materials description 
We will describe a linear elastic material x by its shear 

and bulk moduli, and the linearly viscoelastic material 2'3 
by its shear relaxation modulus G(t) and its bulk 
relaxation modulus K(t). We will further assume that all 
material constants (G and K) or material time functions 
[G(t) and K(t)] are independent of the state of stress; in 
particular, they are assumed to be independent of the 
hydrostatic component of the stress state. The latter is not 



a good assumption for polymers. Young's 14'15 and bulk 
moduli *'SA4A6 clearly depend strongly on pressure----m 
fact, one of the reasons for doing P V T  work is to 
investigate the pressure dependence of the bulk modulus, 
or its inverse, the compressibility. We are ignoring these 
complications, for which there is no place in the linear 
theories of elasticity and viscoelasticity. 

SOLUTION OF THE LINEAR ELASTIC PROBLEM 

From the symmetry of the 'piston/die' problem, it is clear 
that the xa-axis and any two axes perpendicular to it form 
a principal axis system. We immediately find 
ell =g22 = er = 0  (rigid die), and ass(t) = F(t)/A. 

Substituting 0"sa(t) and the known strain components 
into the fundamental equations of elasticity I relating 
stress and strain, yields the only unknown strain 
component: 

3 
%3(0 = 3K +4G o-ss(t) (1) 

Since e3 s is the only non-vanishing strain component, it is 
equal to the relative volume change: 

AV 3 
V (t) = ess(t) = 3K + 4G 0-33(0 (2) 

The transverse stresses 0"r(t)= 0"t 1 (t)= 0-22(t) can next be 
obtained 

3 K -  2G 333(t) 
0"r(t) = 3K +4G (3) 

For the linearly elastic material, it is thus clear that the 
state of stress is not hydrostatic, since the transverse 
principal stresses 0"r are not equal to the third principal 
stress 0"33" 

The elastic solution to the hydrostatic problem is given 
directly by the definition of the bulk modulus: 

AV P 
- ( 4 )  

V K 

It is instructive to compare the ratio R v of the volume 
change in the material in the die under the axial stress 
0"33(0 = F(t)/A (equation (2)) to that experienced when the 
same material is subjected to a hydrostatic pressure 
P(t) = - 0 " 3 3 ( t ) ,  see equation (4): 

A V(die) 3 

Rv - A V(hydrostatic) - 3 + 4G/K 
(5) 

The results are given in Table 1 for a range of values of the 
ratio G/K. Also listed in Table 1 are the values of the 
Poisson ratio v that correspond to the ratios of the 
moduli, as well as the ratio of transverse to axial stresses, 
Rs: 

0-r 3 - 2G/K 
Rs - - 3 + 4 G / K  ( 6 )  

0"33 

From Table 1 it is concluded that for a material with a 
reasonable value of the Poisson ratio (0.25 to 0.4 for most 
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structural metals) the volume changes in the 'piston/die' 
experiment are 20-40~  smaller than those under a 
hydrostatic stress with P = - a s s .  In all fairness, the 
'piston/die' method has not been applied extensively to 
metals or other elastic materials, except by surrounding 
the sample with a sleeve of a soft (plastically deformable) 
material, such as indium or lead. 

We will next proceed to find a solution for a viscoelastic 
material and discuss if the use of the 'piston/die' method 
can be better justified for a viscoelastic material, such as a 
polymer. 

SOLUTION OF THE VISCOELASTIC PROBLEM 

From a solution of an elastic boundary value problem, 
the solution to the corresponding viscoelastic problem 
may be found through the application of the so-called 
correspondence principle 3. Applied to our situation, the 
Laplace-transformed viscoelastic solution is found by (1) 
replacing G and K in the elastic solution with sG(s) and 
sK(s), respectively (where the bar over the function 
denotes the Laplace transform 17 and s is the Laplace 
variable), and (2) replacing the stresses and strains (or 
applied forces or displacements) with their Laplace 
transforms. The final solution can then be obtained (at 
least in principle) by inverting the Laplace-transformed 
solution. 

Applied to our 'piston/die' problem, we obtain from 
equations (1)-(3) the following: 

3 
ea 3(s) = 3s/((s) + 4s(~(s) t~3 a(s) (7) 

A V  
V (s) = ~33(s) (8) 

_ , ,  3sK(s)-2sG(s)_ , ,  
~r[s) = 3s/('(s) + 4sG(s) a as~sJ (9) 

To obtain a full solution by inversion requires a 
knowledge of the time dependence of the applied force 
F(t), yielding #as(s), and the material functions K(t) and 
G(t), yielding/((s) and G(s), respectively. We will now do 
this for the simple cases of the Maxwell and Voigt models. 

Table 1 Elastic material constrained in a rigid die: Poisson ratio v, 
ratio Rs=aT/aaa of transverse stress fiT to axial stress o"33 , and ratio Rv 
of the volume change to the volume change under  hydrostatic 
conditions (with P = - t raa) ,  as a function of ratio of  shear modulus  G to 
bulk modulus  K. The same table may be used for a viscoelastic material 
at t = 0 and for t--* ~ ,  provided G/K is re-interpreted as the ratio of the 
shear and bulk relaxation moduli  at these times, G(O)/K(O) and G®/K ~, 
respectively (see text) 

G/K v Rs Rv 

0.00 0.500 1.000 1.000 
0.01 0.495 0.980 0.987 
0.05 0.475 0.906 0.938 
0.10 0.452 0.824 0.882 
0.20 0.406 0.684 0.789 
0.30 0,364 0.571 0.714 
0.40 0,324 0.478 0.652 
0.50 0.286 0.400 0.600 
0.60 0,250 0.333 0.556 
0.70 0.216 0.276 0.517 
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General solution of the viscoelastic problem at t = 0 and for 
t.--~ oO 

It is possible to obtain a solution at t = 0,  and for t ~  
involving only the shear and bulk relaxation moduli at 
these times. This requires the use of the initial value and 
the f'mal value theorems of Laplace transforms 17. The 
initial value theorem states: 

Q(O) = lira sQ.(s) (10) 
8"¢ O0 

and the final value theorem: 

lim Q(t) = lim sQ(s) (11) 
1""4"o0 $- '*0  

When applying the two limiting value theorems, it is 
useful to introduce the distinction between viscoelastic 
liquids and viscoelastic solids. A viscoelastic material is 
called a viscoelastic liquid in shear, if its shear relaxation 
modulus decays to zero as t~oo:  

G(t)~O for t - ~  (12) 

A similar expression involving the bulk relaxation 
modulus could be used to define a viscoelastic liquid in 
bulk deformation, but no such material is expected to 
exist. 

A viscoelastic solid in shear and bulk deformation, 
respectively, is characterized by relaxation moduli which 
do not decay to zero at t--, ~ .  In that case it is convenient 
to write the relaxation moduli as a sum of a time- 
dependent part and the asymptotic value for t ~  ~ : 

G(t)=Go~ +G+(t) with G+(t)--*Ofort~oo (13a) 

K(t)=K~+K+(t) withK+(t)~Ofort~O (13b) 

Applying the initial value theorem to equations (7) and (8) 
yields: 

AV AV ,. [ 3Strss(S ) "] 
(0) = l i m  s - v - ( s ) =  n m  . - - - - - - - _  

o o  ~ - = L 3 s K ( s ) + 4 s O ( s ) 3  

A•(0) = (14) 
3ass(o) 

3K(0) + 4G(0) 

Similarly, applying the initial value theorem to equation 
(9) yields: 

tr,(0) = 3 K ( 0 ) -  2G(0) 
3K(0) + 4G(0) ass(0) (15) 

Both results (14) and (15) are reminiscent of the elastic 
results (2) and (3), except that equations (14) and (15) 
apply at t = 0 only and the elastic constants K and G are 
replaced by the zero-time values of the relaxation 
functions G(t) and K(t). 

The viscoelastic analogue of equation (4) (using the 
correspondence principle) is: 

-P(s)=sK.(s~-V(S ) (16) 

Applying the initial value theorem to this equation yields: 

A V(0)= P(0) (17) 
K(O) 

This is again reminiscent of the corresponding elastic 
result (equation (4)). 

As a consequence of the analogy between the elastic 
result and the viscoelastic result at t=0,  Table 1 can be 
used unchanged for the viscoelastic material at t=0,  
making only the re-interpretation that the first column on 
the left now represents the ratio of the t = 0 values of the 
shear relaxation modulus and the bulk relaxation 
modulus, G(O)/K(O). 

The short-time values of viscoelastic relaxation 
functions of polymers are commonly determined by 
standardized mechanical tests, such as tensile tests, 
torsion tests, etc., lasting a few minutes. Results of such 
tests are not normally reported as viscoelastic functions, 
but simply as 'elastic constants', similar to those of elastic 
materials. 

When one looks over the available data for short-time 
shear and bulk moduli, it is apparent that the ratio 
G(O)/K(O) is 0.5 to 0.2 for solid polymers. From Table 1, 
this leads to a short-time volume change for the 
'piston/die' experiment 20--40% below that of the 
hydrostatic experiment. The differences are very similar 
to those expected for typical metal samples. On the other 
hand, a soft rubbery material, or a polymer melt, might 
have a bulk modulus as much as 20 times larger than its 
t=  0 shear modulus. This would imply systematic errors 
in the t =0 volume change of just a very few per cent, 
which is likely comparable with experimental error 
inherent in either the PVT method or a 'piston/die' 
experiment. For this type of material, the 'piston/die' 
method can yield acceptable results. 

This discussion of the t=0  volume change can be 
complemented by a similar discussion of the t--,~ 
behaviour. Application of the final value theorem to 
equation (8), (9) and (13) yields: 

31imaaa(t) ( 3 
lim AV = ,-'~ = . . . .  limass(t) 
,~oo V 31imK(t)+41imG(t) \SKoo +4Goo],-.oo 

t--* O0 l "*  OO 

(18) 

3K0o - 2G~o\ 
lim o,(t)= ~ - - / l i r a  O'33(t ) 
t-.~o 3/~oo +4G~o]t-.® 

(19) 

These equations are once again identical in form to the 
elastic results (2) and (3), except that the bulk modulus K 
and shear modulus G have been replaced by the t--, ov 
limits of the bulk and shear relaxation functions, 
respectively. Again, Table I can be used, this time with the 
re-interpretation of the G/K ratio at G=/Koo. What we 
said above about the applicability of the 'piston/die' 
method at t=0  could be repeated here for t ~ .  

At intermediate times (and for a constant applied force) 
the volume change and transverse stresses will increase 
monotonically from the t=0  value to the higher t--* oo 
values. The volume change ratio R v will reach unity for 
any material that is a viscoelastic liquid in shear, since, in 
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Figure 1 Ratio Rv of the volume change in the piston/die problem 
(constant applied stress a°3) to that experienced under hydrostatic stress 
(with P = - a % )  as a function of the ratio of time t to relaxation time tl, 
for a material with a time-independent bulk modulus and the shear 
relaxation modulus of a Maxwell model. Parameter G°/K: ratio of the 
spring constant of the Maxwell model to the bulk modulus 

that case G==0.  Thus, for a viscoelastic liquid, the 
volume change in the 'piston/die' experiment will 
eventually reach the value obtained under hydrostatic 
conditions. Similarly, the transverse stresses will increase 
with time, reaching 0"33 (Rs= 1) after an infinitely long 
time for a viscoelastic liquid. 

Although the results for t = 0 and t ~  Go were shown to 
be identical to the elastic results, with the appropriate 
moduli at those times substituted for the constants K and 
G, this does not hold for arbitrary times. If results for 
intermediate times are desired, the relations in equations 
(7)-(9) must be inverted to obtain the full solutions. This 
requires a knowledge of the materials function G(t) and 
K(t) for all times. 

Complete solutions for Voigt and Maxwell models 
We will derive complete solutions for two simple cases. 

We will assume a constant axial stress a33 = Fo/A= a°3 
applied in the 'piston/die' problem. We will also assume a 
material that has a time-independent bulk relaxation 
modulus K (which is an excellent approximation2), and 
behaves either like a Maxwell or Voigt element 2'3 in 
shear. A Maxwell element consists of a spring (spring 
constant G °) and a dashpot (damper with viscosity r/) in 
series. In the Voigt dement these two basic components 
are connected in parallel. 

The shear relaxation modulus for the Maxwell model 
is: 

G(t)=G°exp(- t / t l )  with tl=rl/G ° (20) 

(Note that the Maxwell model is a viscoelastic liquid.) 
The Laplace transform of the shear relaxation modulus 

of the Maxwell model becomes 17: 

1 (~(s) = G O. (21) 
s + 1/t I 

The shear relaxation modulus of the Voigt dement is: 

G(t)=G°+G°tlg(t) with tl=rl/G ° (22) 

Piston~die problem and PVT studies: M. Lei et al. 

(Note that the Voigt model is a viscoelastic solid, with 
G~ =GO.) 

The Laplace transform of the shear relaxation modulus 
of the Voigt model becomes: 

G o 
G(s) = - -  + G°h (23) 

s 

These expressions_are returned to equations (7)--(9), 
also observing that K = K/s and ba3 = a°a/s, since K and 
aaa=a0a are constants. The following equations are 
obtained: 

Maxwell model 

AV 3a°3 
~3a(s)= V =s[3K +4G°s(s+ l/tx) -1] (24) 

3 K - 2 G ° s ( s + l # l )  -1 o (25) 

Voigt model 

A V 3 a o 
ea3(s)= V =s(3K +4G° +4G°tx s) 3a 

(26) 

_ 3 K - 2 G  °-2G°tx s o 

at(s) = s(3K + 4G ° + 4G°txS) a3a 
(27) 

These Laplace-transformed relations are easily inverted 
by standard methods 17, with the final results given by: 

Maxwell model 

AV. .  a°sF.  4G ° f 3K t 
-~ (t)=~--L 1 - 3 K  +4G°exp[ x -  3K +4G°(~[ ) )?  [28, 

aOfl_ 6G ° f _  3K t 
3K +4G°exp L 3K + 4 G ° ( ~ [ ) ) ]  (29, tTT(t) k 

Voigt model 

30"03 . 

4G ° Ltl J J J  

t7 o 
"33 oF3K_2G o 9 aT ( t )=  3K+4G L - ~ K  

exp: 3K + 4 G ° . ( t  ~q  (31) \ 4G ° \ t ,  :/]J 

First, we wish to point out that these solutions have the 
required values at t = 0  and for t-~oo. This is easily 
confirmed by inspection, and is also apparent from 
Figures 1 and 2. These figures show the time dependence 
of the volume change ratio Rv, defined as before as the 
ratio of the relative volume change in the piston/die 
experiment to the relative volume change under 
hydrostatic conditions with P = -a0a ,  given by equation 
(4) for a time-independent bulk relaxation modulus. 

As expected of any viscoelastic liquid in shear, the 
Maxwell model reaches Rv = 1 for t ~  oe, but starts out 
with much lower values at t =0,  which depend on the 
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Figure 2 Ratio R~ of the volume change in the piston/die problem 
(constant applied stress ~r°a) to that experienced under hydrostatic stress 
(with P = - ~r°a) as a function of the ratio of time t to retardation time tx, 
for a material with a time-independent bulk modulus and the shear 
relaxation modulus of a Voigt model. Parameter G°/K: ratio of the 
spring constant of the Voigt model to the bulk modulus 

ratio of the shear spring constant G O to the bulk modulus 
K. 

The Voigt model, on the other hand starts out with 
R v = 0. This is a consequence of the infinitely high shear 
relaxation modulus at t=0 .  For  t - - ,~ ,  Rv reaches 
constant values, as expected for a viscoelastic solid, with 
asymptotic values identical to those derived from our 
discussion of equation (18), with G~o=G o • At 
intermediate times, the volume change ratio increases for 
both models. 

For  both the Maxwell and the Voigt models it is 
instructive to look at the values e r r  v at t = t 1, i.e. after one 
relaxation (or retardation) time. These differ substantially 
from unity, except for G o ~ K .  Thus, even for a material 
that is a viscoelastic liquid, and eventually reaches Rv = 1, 
the 'hydrostatic limit' is only approached after several 
relaxation times. In 'piston/die' experiments one may 
thus expect a time dependence of the volume change (i.e. 
the piston position), which lasts for a very long time, even 
though the bulk behaviour is dastic, i.e. has no time 
dependence. By contrast, compression experiments using 
a confining fluid show no time dependence at all under the 
same assumption (although real materials may show a 
time dependence, since their bulk deformation may not be 
totally elastic2). 

CONCLUSIONS 

The 'piston/die' method 1°-~3 does not generally 
represent a good method for determining the response of 
materials to pressure. For  elastic materials the method 
yields acceptably low systematic errors for the volume 
change (less than 6 ~o) only if the ratio of shear to bulk 
modulus is smaller than about 0.05, i.e. for materials with 
a Poisson ratio above about 0.475. For  viscoelastic 
materials (such as polymers) the error is above 6 % at t = 0 

and for t ~ o o ,  unless the ratio of the shear to the bulk 
relaxation modulus at the respective times is less than 
0.05. This effectively limits the use of this technique to 
very soft rubbers and polymer melts, but excludes its use 
for polymeric glasses or semicrystaUine materials. In 
addition to these fundamental problems, there may be 
other problems with the technique, such as the difficulty 
of sealing a piston without introducing excessive friction. 

P V T  techniques using confining fluids 7-9 to generate 
true hydrostatic conditions do not suffer from these 
systematic errors, since the exact solution of the boundary 
value problem is used in the calculation of the volume 
change. P V T  techniques using confming fluids must be 
preferred to the 'piston/die' type of apparatus because of 
their universal applicability to solids and liquids. 

There is another aspect related to this topic. It has 
become quite common to measure the 'pressure' in 
polymer injection moulding with transducers placed in 
cavity walls, sprues, runners, etc. These transducers 
measure the stress normal to the cavity wall, the tT T of our 
discussion. This may or may not be the same as a 
hydrostatic pressure acting on the material, depending on 
the nature and physical state of the material (melt, glassy, 
semicrystalline). This will not limit the use of such 
transducers in the empirical control of the injection 
moulding process, where transducer readings are used 
primarily to establish reproducible conditions, but it 
would certainly limit their straightforward use for the 
control of moulding based on actual P V T  properties, 
since the latter are (or should be) based on hydrostatic 
pressure. 
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